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Energy Bands
The free electron model did a reasonable job of calculating some properties of 
metals, but it doesn’t do a great job of explaining the differences between 
conductors and insulators, or the existence of semiconductors.

E.g., a conductor can have resistivity as low as 10–10 !· cm, but an insulator 
can be as high as 1022 !· cm. This is an enormously high range that the free 
electron model doesn’t account for.

The most general treatment uses the Schrödinger equation for electrons in 
the presence of a strictly periodic lattice of atomic potentials.

Model the electrons as moving independently of each other in an average field 
that is determined by the symmetries of the crystal structure.

There are a few different approximate analytical techniques, and  
computational techniques based on them that add complexity.
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Schematic of electron band occupancy for various types of solids, grouped by 
electrical properties.  The vertical size of the boxes indicates the allowed energy 
regions. Shading indicates the parts of the bands that contain electrons. 

A semimetal has one band nearly filled and one nearly empty even at absolute 
zero, while pure semiconductor becomes an insulator at 0 K; higher bands are 
partly filled due to thermal excitation.

Other materials can become semiconductors because of electron deficiency due to 
impurities (right-hand column).
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Energy Bands
The electrons in solids group themselves into allowed energy bands, 
separated by band gaps within which no wavelike solutions to the 
Schrödinger equation exist. 

The forbidden regions arise from interactions between the electrons and the 
lattice structure of the crystal.

Qualitatively, this picture clearly explains the difference between insulators 
and conductors:

• If all allowed regions are either completely full or completely empty, 
then there are no mobile electrons that can respond to an applied E field.
• If one or more bands are between ~10-90% filled, or ~10-90% empty, 
the material behaves like a metal.
• If a band is very close to completely filled or completely empty, the 
material behaves as a semiconductor
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“Nearly Free Electron” Model
In this approximation, the lattice potential is treated as a small, time-independent 
periodic perturbation to the free electron case.

Bragg reflections from the atom cores in the lattice cause the energy gaps in 
solids. 

In a 1-dimensional solid with crystal spacing a, the first band gaps occur for 
wavevectors ±!/a, corresponding to the edge of the first Brillouin zone. Successive 
band gaps occur at k = ±n!/a.

The wavefunctions at k = ±n!/a are standing waves. These are made of equal 
parts rightward and leftward travelling waves, superposed on each other. There 
are two solutions, with opposite parity:

6

• The length L is identified as the size of the one-dimensional object that contains N
atoms with an average spacing a. 

• In this case we impose the boundary condition that !(x) = !(x+L).

• In any finite system the allowed values of k are quantized.  Here, k is restricted to be a 
solution of                     , where n is an integer.

• Successive allowed values of k are separated by 2"/L, so the number of energy states 
between –"/a and +"/a is equal to L/a = N.

Boundary conditions
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Probability Densities
The probability density for finding the electron at position x is |!(x)|2, so the 

probability for the electron to be found in a given region between x and x+dx is                 

.   A travelling wave, corresponding to a free electron, has equal 

probability of being found anywhere along the line, and thus constant charge 

density along the wave.

P(x) = |!|2
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The Origin of Band Gaps
The positive and negative parity standing wave functions indicate different 
concentrations of electrons at specific locations in the lattice. 

The solution !+ gives charge density ∝ cos2(#x/a), which concentrates the negative 
charge density around x = 0, a, 2a, 3a… , minimising the potential energy.

The solution !– is proportional to sin2(#x/a), which maximises the potential energy.

The two standing waves, with the same k, have quite different energies.
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Band gaps in a 1-d lattice
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Energy of an 
electron in a one-

dimensional lattice
as a function of wave-

number k.

Dashed line = free electron. 

Band gaps appear where
the lattice spacing is 
a half-integer multiple of 
the electron wavelength. 
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Size of the Band Gap
For electrons with energies corresponding to k very far from ± !/a, the energy 
distribution is continuous, and very like the free electron case.

The two wavefunctions at the edge of the Brillouin zone with k = !/a are                                   
and                                 .

The periodic potential can be approximated as                                     .

The band gap can be calculated using time-independent perturbation theory to 
calculate the expectation value of E– and E+ . Doing the integrals shows that 
the size of the band gap is equal to the depth of the periodic potential, 

.

In turn, U0 depends on how many electrons are taken from the individual 
atoms to create the sea of conduction electrons.
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The Bloch Theorem
A crystal can be thought of as a periodic potential with which the electron 
wave functions interact, limiting the allowed wavefunctions to certain specific 
forms. 

The phonon spectrum had a cutoff at the Brillouin zone boundary (k = ±!/a), 
but there is no such cutoff for electron probability density waves.
The Bloch theorem says that: 

The eigenfunctions of the wave equation for a periodic potential are 
the product of a plane wave e(ik· r ) times a function uk(r) with the 
periodicity of the crystal lattice.

A one-electron wave function of this form is known as a Bloch function, and it 
can be Fourier decomposed into a sum of travelling waves, and summed up 
into wave packets that describe the electron probability density distribution 
in the crystal lattice. 
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Restricted Proof of the Bloch Theorem
When the wavefunctions are non-degenerate (there are no other !k that have 
the same energy), the Bloch theorem can be proved by considering a ring of 
lattice points of circumference Na. 

a
1

2

N

N–1

The potential energy of an electron moving through
this ring is periodic, U(x) = U(x+sa), where s is an

integer.

The wavefunction should also be periodic, but
consider the form                                 .

Going around the whole, ring,

Because ! must be single-valued, CN  = 1, or                     . 

So the full wavefunction can be any periodic function u(x) with period a, 
multiplied by C, or                                                     , which is Bloch’s result.
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The Kronig-Penney Model
A 1-dimensional periodic array of square well potentials can be solved for a 
wavefunction made of elementary functions.

In the region from 0 < x ≤ a, the potential U = 0, and from a < x ≤ b, U = U0.

The Schrödinger equation                                              has the general solution

where U = 0,                                       , with 
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The Kronig-Penney Model
A periodic array of square well potentials can be solved for a wavefunction made of 
elementary functions.

Where U = U0, the solutions are                                    , where  

The Bloch theorem constrains the solutions, so that ! in the region from 
–b < x ≤ 0 and from a < x ≤ a+b are related by 

The constants A, B, C, D are chosen so ! and ∂!/∂x are continuous, giving four 
equations and the condition that the determinant vanish. The full solution is

but for b → 0 and U0 → ∞, Q2ba/2 ≡ P, and 
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The Kronig-Penney Model

In the limit as the potential barriers get infinitely high and infinitely narrow, the 
solutions take on the form                                                           .

The structure of this function leads to forbidden regions, where Ka is not between 
0 and ±1.  

Remember that K is the wavevector related to the energy of the wavefunction !, 
while k is the wavevector associated with the periodicity of the lattice (the Bloch 
function). 
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The Kronig-Penney Model

Where                                      is outside the range 0 to ±1, there are no travelling 
wave (Bloch) solutions to the wave equation, giving rise to energy band gaps in 
which no electron energy levels can exist (shaded regions).

The plot here is for P = 3!/2 and the parameter P = Q2ba/2
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The Kronig-Penney model
This plot shows the electron energy 
vs. wavenumber for the Kronig-
Penney potential, plotted for P = 3!/2.

Energy gaps appear where ka = !, 2!, 
3!, …

The Kronig-Penney energy gaps and 
wavefunctions are a special case of 
the more general “nearly free electron 
model”.

Specifically it only applies in 1-
dimension, but it’s instructive to 
examine because of the insight into 
how the band gaps come about.
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Electron in a Periodic Potential
To solve the Schrödinger equation in general for a three-dimensional case will 
produce a massive system of matrix equations with periodic components in 
both the Bloch wavefunction and the mean field potential.

If U(x) is the potential energy of an electron in a lattice with constant a, U(x) 
is periodic such that U(x) = U(x+a), the potential can be expanded in a 
Fourier series of the reciprocal lattice vectors G. 

In a real crystal, the magnitude of UG tends to decrease rapidly with 
increasing G.  If U(x) is a real function then we can write
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Bloch functions
The eigenfunctions (orbitals) that represent electrons with energy eigenvalue 
! are solutions of the Schrödinger equation

where this is given in the one-electron approximation: that is, "(x) represents 
the probability density distribution of a single electron in the potential of the 
ion cores of the lattice plus the average potential of all the other conduction 
electrons.

The solutions " can also be written as the Fourier series in all the wavevector 
components permitted by the boundary conditions, 

This is unlike the phonon case because the electromagnetic field exists at all 
points and not just the position of the ion cores.
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Crystal Momentum of an Electron
There are a few different ways to describe the importance of the wavevector k
used to label the Bloch functions.

• If the lattice potential vanishes (or is very small compared to the electron 
energy, the Bloch function k becomes identical to the wavevector of the free 
electron with                        .

• Under a translation vector T that takes the electron from r to r+T, exp(ik· r) 
is the phase factor that multiplies the Bloch function.

• The quantity ℏk is called the crystal momentum of the electron and enters 
into the conservation laws that govern collision processes between electrons 
and phonons:  k + q = k′ + G.
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The Empty Lattice Approximation
Actual band structures in crystals are usually displayed as plots of energy vs. 
wavevector in the first Brillouin zone (any vector outside the first zone is 
reduced to its equivalent by subtracting the appropriate lattice vector).

This is a pretty straightforward procedure - a reciprocal lattice vector G must 
be found such that the true “free” electron wavevector k = k′ + G. 

The electron energy can be written as

In the empty lattice approximation, the potential is described as strictly 
periodic, and weak. In this approximation neither the lattice translation nor 
electron interactions affect the electron energy.

Although the potential is weak, the extent of the crystal is large, so 
eventually free electrons are scattered and undergo Bragg reflections from 
the crystal planes. 
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The Empty Lattice Approximation
Free electrons have a very 
simple dispersion relation 
where the energy is quadratic 
in the wavevector k.

The figure shows the electron 
band structure for an empty 
lattice. 

Note that the size of the 
forbidden band gaps has 
collapsed to zero, because 
perturbing potential 
approaches zero.
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The Empty Lattice Approximation
In real crystals, the dispersion relations look like paraboloids centred around 
each reciprocal lattice point, except they bend to hit the Brillouin zone 
boundaries at 90° (so the group velocity goes to zero there).

Left: Empty lattice approximation for an fcc crystal.  Right: band structure for aluminium (an 
fcc metal). Figure from Harrison (1960), Phys. Rev., vol. 118, p. 1182. Note that band gaps exist 
in the real metal.
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Summary of Band Theory
• Solutions of the wave equation in a periodic lattice are of the Bloch form

, where uk(r) is invariant under a lattice 
translation.

• There are energy ranges for which no (real) Bloch wave solutions of the 
wave equation exist. These forbidden regions have complex k. Note that in a 
3-d, unbounded crystal, k must be real in order to keep the amplitude finite.

• Along a surface or an
edge, complex wave
vectors can exist (and 
along the edges of the
Brillouin zone, are
guaranteed to exist).  
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Summary of Band Theory
• Far from the energy gap boundaries, the wave functions may be 
approximated by plane waves (free electrons).  Closer to the zone boundaries 
at |G|/2, wave functions may be approximated in many cases as the sum of a 
couple of plane waves., e.g.,

• The number of orbitals in a band is 2N, where N is the number of primitive 
cells in the specimen.

Insulator Metal/semimetal 
(band overlap)

Metal/semimetal 
(e– density)
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Conductivity & 
Band Theory

Density of charge carriers at room 
temperature for metals, 
semimetals, and pure 
semiconductors, at room 
temperature.

Semiconductors have strongly 
temperature dependent electrical 
conductivity and tend to act as 
insulators at T = 0.

Transistors, diodes, detectors, 
photovoltaic cells, thermistors, etc. 
are frequently built around 
semiconductors.
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Formation of Bands - Qualitatitve
When two identical atoms are infinitely far apart, their electron orbitals do 
not affect each other. Taking for example the 3s orbital, the electrons in one 
sodium atom will have exactly the same energy with respect to the nucleus as 
any other well-separated sodium atom.

At close separations, the electron
wavefunctions overlap, and cannot 
be considered independently. Instead 
we have one wavefunction describing 
the entire system, and the energy 
states will split depending on 
whether the wavefunctions add or 
subtract.

They can’t be equal because of the
Pauli exclusion principle.
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Continuous Energy Bands

The 3s level has now become a 3s band. N levels for N atoms.
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Band Capacity and Gaps
If a band is created by N atoms coming together, the capacity of the band can 
be taken from the degeneracy of the original (separated) energy levels, which 
can each hold 2 (2l+1) electrons.

A picture of the bands of the ground
state of sodium is shown at right.

The 3s band could accommodate 
2N electrons, but is only half-filled,
making sodium metal a good 
electrical conductor.

At T > 0, the 3s electrons could
absorb a small amount of energy
and be excited into the 3p state.
This happens according to the 
Fermi-Dirac distribution function.

1s

2s

3s

2p

3p

2N

2N

6N

N



31Solid State Physics-11

If the Fermi level corresponds to the top of an energy band, and there is a 
large gap between that band and the next, then the material acts as an 
insulator.

In many cases these properties could be approximately worked out just by 
considering the atomic properties of the elements in isolation. Other cases 
seem counter-intuitive, e.g., magnesium, which has a filled 3s shell yet is a 
good conductor. 

The reason for this is that the the 
separation of the atoms is so small
that the 3s and 3p orbitals are
merged together into a single band
with a capacity of 8N electrons.
However, only 2N of the available
states are filled, and so Mg is a
good electrical conductor.

3s

3p

Atomic Separation
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8N   

Image: sketch of band structure of Mg
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Semiconductors
In carbon, there is 
mixing of the bands at 
moderate separations, as 
for magnesium.

For even closer 
separations, the mixed 
single band splits again, 
into two levels each with 
a capacity of 4N.

Carbon is thus an 
insulator. Silicon and 
germanium have the 
same band structure, but 
the band gap is smaller, 
making them 
semiconductors.
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Intrinsic Semiconductors
A semiconductor has a band gap of order 1 eV between the valence band and 
the conduction band. At T = 0 there is no thermal excitation across the band 
gap, and the material acts as an insulator. In contrast to a conductor, the 
conductivity increases with temperature.

At room temperature, the thermal energy kT is about 0.025 eV. The band gap 
is about 40 times the thermal energy, and so according to the Fermi-Dirac 
distribution, only about 1 in 109 electrons can contribute to the conduction.

The approximately exponential dependence of electron occupation on Egap/kT 
accounts for the extreme variation in conductivity between conductors, 
semiconductors, and insulators for band gaps that range from 0 - 10 eV.
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Holes
When an electron is excited across the band gap into the conduction band, it 
leaves behind a hole in the charge density of the valence band. The number of 
holes in the lower band is exactly equal to the number of electrons excited into 
the upper band.

If an electric field is applied to the semiconductor, the electrons in the 
conduction band will follow the force, producing an electric current. 

The same is true of the electrons in the valence band, but there are very few 
available energy states for them to occupy. The net effect is that the vacant 
holes appear as quasiparticles that have positive charge, and travel in the 
opposite direction from the electrons in the conduction band.

The current in a semiconductor has two contributions: from the electrons in the 
upper band, and from the holes in the lower band. These will in general not be 
equal because the hole properties are determined by the totality of 
wavefunctions of electrons in the valence band. (Typically an individual hole 
acts as if it has larger mass that an individual electron).
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Impurity Semiconductors
Impurities in a crystal can strongly influence the potential due to the lattice 
structure, thus changing the electrical conductivity.

Even for impurities at the level of 1 part in 106, the impurities can dominate 
the electrons in the conduction band, which are only at the level of 1 in 109 for 
semiconductors.  E.g., the addition of boron to silicon in the amount 1 part in 
105 increases the conductivity by a factor of 103 at room temperature.

Thus the properties of semiconductors can be very carefully engineered by 
carefully controlling the amount and type of impurities introduced into the 
crystal (known as doping). 

The impurities come in two basic types: 
• additional electrons are added to the conduction band, or
• additional holes are added to the valence band.
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Semiconductors: Bond Structure

In materials like silicon or germanium, 
there are four valence electrons in the 
hybrid orbitals. 

If a Ge or Si atom is replaced by a 
pentavalent atom, e.g., As or Sb, the 
fifth electron will not participate in 

bonding, but is relatively weakly bound 
to the impurity atom.
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Donor States

The donor electrons sit just a 
fraction of an eV below the 
conduction band, and can easily be 
excited at room temperature.

A semiconductor with this type of 
impurity is called an n-type 
semiconductor, because the 
contribution to the conductivity 
comes from an excess of electrons.
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Semiconductors: Bond Structure

In materials like silicon or germanium, 
there are four valence electrons in the 
hybrid orbitals. 

If a Ge or Si atom is replaced by a 
trivalent atom, e.g., B, Ga, or In, there 

will be a hole created, that can 
contribute to the conductivity.
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Acceptor 
States

The hole attracts electrons 
from the upper levels, which is 
equivalent to saying the hole 
excited into a new state known 
as an acceptor state.

The acceptor states form 
discrete levels just above the 
valence band.

This type of semiconductor is
called a p-type semiconductor, 
because the holes are the major 
contributor to the conductivity.


