Section 2: Conduction properties of Semiconductors

Electrons and holes

We know that current is caused by moving electrons, it can also be caused by the absence of
electrons moving. We call these absences holes, and they act as positive charges moving through
solid.

In the case of semiconductors we call the full lower band the valence band, and the empty upper
band the conduction band. When an electron is excited into the conduction band, it leaves behind a
hole in the valence band, effectively creating two free charges at the same time.
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We can treat the electron in the conduction band as a “free” particle. These electrons move through
the crystal lattice by filling a hole, moving back into the conduction band, then filling a different hole.
The “positively” charged holes can therefore be equivalentely viewed as moving through the solid.

The average thermal energy of an electron is approximately k T =0.026 eV at room temperature. By
contrast, the bandgap in Silicon is 1.1 eV ; not many electrons make it to the conduction band. At
room temperature Silicon has about 10'° electron-hole pairs per cubic-centimetre (EHP cm™3). This
seems like a lot but there are 5 x 10?2 atoms cm™ in Silicon. Pure silicon is not a very good
conductor.

Charge carrier concentration

Determining the concentration of charge carriers at different energies or temperatures is vital to
understanding the conduction properties of semiconductors. There are two parts to the calculation:
1) Finding which energies correspond to an allowable energy state.
2) Determining which states the electrons are in (statistically speaking).

Density of states

Energy states are not uniformly distributed throughout the conduction and valence bands. The
precise density of the states can be determined from quantum mechanics, but we only need an
approximation here. The number density of electrons and holes g(E) at energy E is found to have

the form:
E-E. E>E,
g(E) « 0 E,<E<E;
E,-E E<E,

where E; is the lowest energy level of the conduction band and E, is the highest energy level of the
valence band. But to find the total number of free electrons in the conduction band, we need to
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multiply g(E) by the probability of finding an electron at each energy level.

Fermi - Dirac distribution

The probability that an energy level (E) will be filled by an electron is given by the Fermi-Dirac
distribution from statistical mechanics. The filling of all available states up to the Fermi level, and
then no electrons above that, only applies at zero kelvin. To model electrons at temperatures above
absolute zero we need to make use of the full equation:

1

f(E) = E-Ef)kT

T 146l
k is Boltzmann’s constant, 8.62 x 107° eV/K
T is the temperature in Kelvin

E¢is the Fermi level, note that f(Ef) = ;—
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Because holes and free electrons are created in pairs, we expect that Er= (E; + E,)/2, where again
E. is the lowest energy of the conduction band and E, is the highest energy of the valence band.

If E - Ef> k T then we can approximate f(E) = e E-EVkT At room temperature of 300 K,

kT = 0.026 eV so this is usually the case, as band-gap energies are on the order of ~1 eV. We call
this the Boltzmann approximation.

Number density of electrons/holes

The number density of charge carriers is calculated by multiplying the density of states g(E) by the
probability of finding electrons in those states f(E), then integrating with respect to the energy E. So
the number density of free electrons n in the conduction band, where n stands for negative charge
carrier is:

n = f f(E)Q(E) dE = N, e E-ENKT
E.

where N, is the effective density of states in the conduction band. Similarly we can do this for holes,
to get the number density of positive charge carriers p in the valence band :

p= ]{v“—f(E))g(E) dE = N, e &EIKT
0

where N, is the effective density of states in the valence band. Why do we write 1-f(E) here?
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The Fermi-Dirac distribution has more higher energy states for electrons at higher temperatures;
this leads to the production of more electron-hole pairs. We would therefore expect more conduction
at higher temperatures.
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Fermi level in intrinsic semiconductors

For pure semiconductors, electrons get into the conduction band via pair production. This means
there are an equal number of holes p and free electrons n produced.

n=,0=ni

We call semiconductors like this intrinsic semiconductors, and n; is the number density of intrinsic
charge carriers. We then make use of an important relationship: the n p product:

np = n?

This may seem trivial, however it turns out to be a quite general relationship, even when we are not
dealing with an intrinsic semiconductor. From this we get:

n= [ N, N, e Eo2kT

where Eg = E; - E, is the band gap energy.

Example: Calculate the number density of charge carriers in a Silicon crystal lattice. At 300K the band
gap energy is E;=1.12 eV, and the effective density of states in the conduction and valence bands are
N;=2.82x10"cm™3, N, =1.83 x 10"® cm™ respectively.
At room temperature (300K),

kT = (1.38x 10723 J/K)(300K)

=4.14x102"y
= 0.026 eV

The number of electron-hole pairs is therefore:
nj= \/((282 x 1019 Cm—3) (1 83 x 1019 Cm—3)) e—1.12 eV/(2 x 0.026 eV)

ni=10"" cm™3

Equating the number density of holes p and free electrons n it is also possible to calculate the
intrinsic Fermi level:
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The second term in this expression is much smaller than the first at room temperature, i.e.
Ef= (E; + E,)/2. The Fermi Level is therefore very close to the centre of the band gap.

Doping

The carrier concentration in intrinsic semiconductors at room temperature is lower than we would
like for device fabrication. If we wish to improve or control the conduction properties of our semicon-
ductors, we can include dopants to change the number of free charge carriers. A group Il element
(B, Al, Ga, In) will act as an acceptor of electrons and produce a hole, a group V element (N, P, As,
Sb) will act as a donor and produce a free electron.

These donor atoms take the place of one of the group IV atoms in our semiconductor, and either
provide an extra hole or electron. These extra electrons or holes are very weakly bound to the donor
or acceptor atoms and so an extra energy level is introduced, but very close to the conduction or
valence band energies.

n-type semiconductors

The Group V elements have an extra electron in their outer shell (than C, Si etc), creating extra
negative carriers (hence n-type semiconductor). The extra electrons create extra energy levels near
the top of the band gap. These levels are filled at zero temperature. These energy levels are close
to the conduction band and thus the electrons easily move to the conduction band.
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If we include a number density Ny donor atoms, where Ny >> n;(T), and there is enough thermal
energy to excite the donor electrons into the conduction band, then n = Ny. This is called an extrin-
sic semiconductor. We can find the number of holes by using np =n?, i.e. p = n,-2/Nd. The elec-

trons are called the majority charge carriers, the holes are the minority charge carriers.

p-type semiconductors

We could instead include a number density N, of group Ill acceptor atoms, adding holes and creat-

ing extra positive carriers (hence p-type semiconductor). Extra energy levels near the bottom of the

band gap. These are empty at zero temperature. These energy levels are close to the valence band
and thus the electrons easily move to them and leave behind holes.
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Similar to before we have p = N and n = n,-z/Na. The holes are the majority charge carriers and
the electrons are the minority charge carriers.

If we add both N, group Il atoms and Ny group V atoms, what we end up with depends on the
relative values of N, and Ny. If N, > Ny then we have a p-type semiconductor with p = N, = Nj.
Alternatively if Ny > N, then we have an n-type semiconductor with n = Ny — N,. These relations
both assume that (N, - Ng)? >> n/?.

Fermi level and temperature dependence

n-type semiconductors

The Fermi level is adjusted by the doping of the semiconductor crystal. If there is sufficient thermal
energy to excite all the donated electrons in an n-type semiconductor then we have n = Ny. Also
recall that n = N, e"E~EVkT Combining these the Fermi level for an n-type semiconductor is:

Ef=EC—kTIn(x—;)

Increasing the number of donor atoms therefore increases the Fermi level.

p-type semiconductors

If there is sufficient thermal energy to excite all the electrons out of the acceptor atoms in a p-type
semiconductor then we have p = N,. The Fermi level for a p-type semiconductor is thus:

E= Ev+kT|n(,“V’—:)

Increasing the number of acceptor atoms therefore decreases the Fermi level.

Temperature dependence and “Freeze out”

In assuming that n = Ny for n-type semiconductor, we had to make two assumptions:

1. Ny >> ni(T); this is stops being true at higher temperatures when the number of intrinsic charge
carriers becomes comparable to the number of donor atoms. Consider silicon doped with

Ny =10"" atoms cm~3 donor atoms. We can roughly estimate the temperature at which the extrinsic
region (where n = Ny) starts to give way to the intrinsic region, by calculating when n; is say 10% of
Ngy. Now to do this we will assume that the effective density of states is constant (it actually has a

73”2 dependence). So we have:
ni=y NoN, e52kT =01 Ny

Solving this with our values for silicon gives us T~840K, which is very hot, but still well below the
melting point of silicon (1,687 K). If we include the 732 temperature dependence we get T~720 K,
which is not too far off. These are rough estimates, as there are other factors involved but they give
an idea of the temperatures.
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2. The other assumption is that there is enough energy to excite donor electrons into the conduction
band. “Freeze out” occurs when there isn’t sufficient thermal energy to excite electrons out of this
state into the conduction band. To get a rough estimate of the temperature freeze-out begins, let us
say that we have a semiconductor with band gap 0.039 €V (i.e. the n-type dopant is Antimony). We
want the temperature at which the number of free electrons for our tiny band gap semiconductor is

equal to Ny. Assuming the Fermi level is halfway between the donor level and the conduction band
we have:

n = N, e 0039eVi2kT _ n_

Solving this gives T~40 K, or with the T%”? temperature dependence in N, a slightly hotter T~67 K.
These are very rough estimates, and only apply to lightly doped semiconductors. If the doping level
is significant freeze-out effects can be eliminated, similarly if both n-type and p-type dopants are
included this can compensate and also reduce the effects of freeze-out.
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At room temperature, both of these assumptions are typically satisfied and we can take n= Ng.
These same assumptions discussed for n-type semiconductors also apply for p-type
semiconductors.

Currents and conductivity

Effective carrier mass

Electrons can effectively behave like free particles moving through the lattice. However the
electron is not in free space, the lattice effects its behaviour. We can account for this differ-
ence by introducing a modified carrier mass m,, where we find that usually m, < m, < me (free).
Strictly speaking m, depends on the energy of the electron (i.e. position within the conduction
band). However, we will assume that the electrons are all near the bottom of the conduction
band so we can ignore this effect. This effective mass is a good way to hide many of the
complications of the lattice structure.

Charge transport in the valence band is also a result of electron motion. However, it is harder
for valence band electrons to move around, so we expect a larger effective mass for elec-
trons in the valence band. Thus, m, is the effective mass of the positive charge carriers (or
the effective mass of a hole).

Brownian motion

Free particles inside a semiconductor undergo random thermal motion at room temperature, known
as Brownian motion. The kinetic energy is Ex = ;—mn Vin? = %k T leading to the "root-mean-squared”



Semiconductors2.nb | 7

speed of v, = \/ 3k T/m, forthe electrons (vi, = 10%m/s in Si at 300K). This movement is not in one
direction though, it is random; the electrons scatter off each other, impurities in the lattice or even
thermal vibrations of the atoms. There is no mean distance travelled, i.e. thermal carrier motion
produces to macroscopic current.

The average time between scattering events is 1¢, and so the average distance travelled, termed the
mean free path, is I = v, .. As an estimate, 1~ 1psand / ~ 1075 cm.

\

®
If we include an electric field ¢ there will be some net movement of the electrons, each electron will
experience a force F = -e¢ and will be accelerated in between each collisions. During this time the
momentum gained is F 1, = m, v,. The average drift velocity of electrons is thus v, = —‘;J‘* E=—lpE,
n

€L js the electron mobility. Thus the electrons drift against the electric field with a veloc-

Mn

ity that is proportional to the strength of the field. Similarly for holes we have v, =y, €, where p, =

where u, =
et
Mp

is the hole mobility. p carriers are much less mobile than n carriers; atoms are much heavier than
electrons.
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The mobilities u, and u, depend on both the temperature and the level of doping; they are mea-
sured experimentally.

Lattice scattering: The carrier “collides” with vibration in the lattice. These vibrations increase with
temperature decreasing the mobility as parice « T~/2.

Impurity scattering: The carrier travels past an impurity in the lattice and is deflected. At higher
temperature the carrier spends less time near the impurities increasing the mobility as Uimpurity «< 792,

The total mobility is the found by summing the frequency of collisions, i.e. fitar = fiattice + fimpurity and
80 1/ ttotar = 1/ Ujattice + 1/ Himpurity -

Drift current

But we actually want to know the current due to a voltage applied across the semiconductor.
The current I passing through cross-sectional area Ais J=1/A =-en v, (i.e. the current density),
with drift velocity v, = —u, €. This gives us drift current for electrons of J,, gritt = N n € € and similarly
for holes of J, arit = p Up € €. The total drift current is the sum of the currents caused by the electrons
and holes:

Jarift = Jp,drift + Inarit =€ (Up P+ n N) € = TE.
This is just Ohm’s Law J= 0 &, where g = e (Up p + Un n) is the conductivity. The resisitivity p=1/0 is
thus p=1/e(up p + unn) and the resistance R=L/Acgis R=L/Ae(upp + tnn). In p-type semiconduc-
tors we can neglect the contribution due to the electrons, similarly in n-type semiconductors we can
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neglect the contribution due to holes.
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Diffusion current

If there is an uneven distribution of free electrons in the semiconductor material, then those carriers

will tend to move apart over time. The flux of electrons is given by F, =-D,, Z—Z, where D, =v, I is
called the diffusion constant and the minus sign means electrons flow out of areas with high electron

density. These fluxes produce diffusion currents J, gir = - Fn=e D, Z—Z and Jygr=eFp=-eDp %ﬁ.

The total electron and hole currents in the semiconductor material are thus J, = Jp gritt + Jnqirf @and
Jp = Jparit + Jpdifr, and the total currentis J=J, + Jp.

The drift and diffusion currents are characterised by the mobilities ¢ and the diffusion constant D.
These quantities are related by the Einstein relation:

Dy _ Do _ kT
Hn Hp e

Hall effect and mobility

Carrier mobility is most commonly measured using the Hall effect. Consider a semiconductor of
length L, width W and height t with a voltage V applied along it length producing current, and mag-
netic field B applied perpendicular to the current.

The moving charges will experience a force F = q v x B (Lorentz force) producing an electric field gy
across the width of the material. Electrons and holes end up moving the same direction (-y), which
means the direction of the electric field will depend on whether the semiconductor is p-type or n-
type. Intrinsic semiconductors will not produce an electric field since there is an equal number of
holes and electrons.

In a p-type semiconductor the force on an electron is in the y direction (width) is given by:
Fy=-e(-en+| v x B ). In equilibrium we will have F, =0 and so &4 = vg4irt B. Now in the x direction
(length) we have J = e p vgiix. Eliminating vyrist gives us ey=JB/ep = Ry, JB where Ryp=1/epis
called the Hall coefficient for holes. Similarly the Hall coefficient for electrons is Ry, =-1/en.
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the width of the material. This is very useful, since Ry, =1/ ep we have p = 1/e Ryp = N,, and
similarly since Ry, =-1/enthenn = -1/e Ry, = Ng. We can measure therefore measure dopant
densityl a very well controlled setup can measure densities down to ~10'? atoms /cm?, i.e. 1in 10"

atoms!

We can measure these coefficents; Ry=¢€y/ JB = = Vyt/ 1B, where V4 is the voltage across

The mobilities and diffusion constants can then be calculated by measuring the resistance. R =L/
Wto=L/Wtu,ep =L Ry/Wtp,. We can then get the diffusion coefficient from the Einstein
relations.

Direct and Indirect semiconductors

A direct semiconductor (i.e. GaAs) has the minimum energy of the conduction band at the same
momentum as the valence band maximum energy. This allows free electrons to recombine with
holes easily and produce photons. These photons will have energy equal to the band gap energy.
This makes direct semiconductors good light emitting diodes.

Indirect semiconductors (i.e. Si) don’t have the momentums coincide, it is more difficult then for
electrons to drop down and recombine with holes as this requires a change in momentum. As a
result indirect semiconductors make poor LEDs.

Indirect Band Gap Direct Band Gap

. AN Conduction Band ,//

Energy

Valence Band N

Momentum Momentum



