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Phonons: Crystal Vibrations
In the previous section we worked out the wave vectors of elastic waves in 
solids, by relating the stresses on displaced of atoms to the allowed 
wavevectors that described traveling waves in the solid. 

However, the treatment so far has only been valid for the case that the 
lattice constants a are very small compared to the wavelength (the 
continuum approximation). 

To do better, we need to deal with the fact that the vibrations are 
quantised. By analogy to the quantum of electromagnetic radiation, the 
quantum of elastic waves is known as a phonon. 

In the case of waves in the [100] (edge), [110] (face diagonal), and [111] 
(body diagonal) directions, the solution of the wave equation is simple, 
because entire planes of atoms move together, and the wave can be 
described by a 1-dimensional displacement vector us.
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Vibrations within crystal planes

A longitudinal displacement wave: planes of atoms are displaced by an 
amount u with respect to their equilibrium position (shown by the dotted 
lines). There are two other polarizations, the transverse waves, not shown. 

s–1 s s+1 s+2 s+3 s+4

K

us us+1 us+2 us+3 us+4us–1
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Vibrations for Monatomic Basis
When the atomic basis on the lattice is monatomic, the problem is 1-
dimensional.  

Assume the potential energy of interaction between planes is quadratic in u 
(the harmonic approximation).  For small displacements, cubic and higher 
terms will tend to be negligible; linear terms from opposite sides will cancel 
out. 

Then the force between neighbouring planes is proportional to their separation. 
For plane s, we have                                                        , under the conditions 
that  
     1) we only include nearest-neighbours to a first approximation, and  
     2) C is the force constant per atom. C differs for longitudinal and     
transverse waves. 

The equation of motion is                                                    , which has travelling 

wave solutions for frequency 

Fs = C(us+1 � us) + C(us�1 � us)

M
d2us

dt2
= C(us+1 + us�1 � 2us)

!2 = � C

Mus
(us+1 + us�1 � 2us)
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The solutions for the travelling wave are 

Substitution of the expression for !2 and cancelling u exp(isKa) from both 

sides of the equation, we can get  

From the definition of cos(Ka), this is rewritten as the phonon dispersion 
relation: 

This has a special relationship to the boundaries of the first Brillouin zone, 

which lie at K = ±"/a.  Consider the derivative                                .  The 

derivative vanishes at the edge of the first Brillouin zone.

Vibrations for Monatomic Basis
us±1 = u exp(isKa) exp(±iKa)

!2 = � C

M
[exp(iKa) + exp(�iKa)� 2]

!2 =
2C

M
(1� cosKa)

d!2

dK
=

2Ca

M
sinKa
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Dispersion Relation
Another trig identity allows us to write ! = (4C/M)1/2| sin 1

2
Ka|

The area right around K = 0 (K << 1/a; λ >> a) corresponds to the 
continuum approximation, where ! ∝ K.
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The First Brillouin Zone
The range of independent wavenumbers K is given by                             . 

This exactly corresponds to the range of the first Brillouin zone in the 
reciprocal lattice; any other values of K describe the same physical motions, 
shifted by an integer multiple of 2"/a. 

Some points to note: 

• At K = ±"/a, the group velocity goes to zero. Energy is not transmitted 
through the crystal by waves of that wavelength and direction. 

• At the zone boundaries, the wave motion becomes a standing wave: 

Alternate planes of atoms move in opposite phases. 

• wavevectors along the Brillouin zone boundary are analogous to the 
Bragg condition (with # = "/2, d = a, n = 1). 

�⇡/a < K  ⇡/a

us = u exp(isKa) = u exp(±is⇡)

us = u(�1)s
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The Long Wavelength Limit
For λ >> a, the prodcut Ka << 1. That means the cos(Ka) term can be 

expanded as                                       .  The dispersion relation                                                               

                       simplifies to                              . 

In the long wavelength limit the frequency is linearly proportional the 
wavevector, so that the sound speed v = !/K is a constant in this limit. 

In the continuum limit the classical result for elastic waves is recovered. 
The complex spectrum of energy transmission in solids is only 
apparent when the wavelengths are small compared to the 
interatomic spacing.

cos(Ka) ⇡ 1� 1

2
(Ka)2

!2 =
2C

M
(1� cosKa) !2 = (C/M)K2a2
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Long Range Forces
All of the preceding was derived by only considering the interaction 
between nearest neighbours. Sometimes this is a bad assumption (as in 
metals).    

If an integer number of planes p contributes to the restoring force of the 
oscillation, then the dispersion relation can be generalised 

where the strength of each interaction between crystal planes separated by 
p units is given by the appropriate force constant Cp.  

By experimental observation of the dispersion relation for waves in a solid, 
the force constants Cp can be determined. 

For some metals, up to 20 terms may be needed to accurately describe the 
observed waves: that is, crystal planes separated by up to 20 lattice units 
are influencing the wave energy transmission.

!2 = (2/M)
X

p>0

Cp(1� cos pKa)
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Two or More Atoms per Basis
The phonon dispersion relation is relatively simple when there is only one 
atom per primitive cell, as in the previous discussion.   

If there are p different atoms in the basis, where p is an integer, the 
dispersion relation splits into 3p independent branches.  These are known 
as the acoustic (3) and the optical (3p–3) branches.  

Consider a crystal with a two-atom basis, e.g., NaCl, or diamond. These 
would have six different possible waves represented in the dispersion 
relation: one longitudinal and two transverse acoustic waves (LA, TA), and 
one longitudinal and two transverse optical waves (LO, TO). 

The optical modes get their name because they can be excited by absorption 
of electromagnetic radiation (if the atoms in the basis have opposite charge) 

The acoustic modes correspond to classic sound waves (in the long 
wavelength limit). Note that sound waves in solids have both longitudinal 
AND transverse components.
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Diatomic Linear Chain
Consider a linear chain with two atoms per primitive unit cell. A cell with length 
a contains two atoms/ions. One atom with mass M is located at sa, and one atom 
with mass m is located at (s+1/2)a, for any integer s. 

In general a chain of N atoms will have N different normal modes of oscillation. 

For a given value of s, making the harmonic approximation (Hooke’s law), we can 
write the displacements as

M
d2uMs

dt2
= CMm [ums + ums�1 � 2uMs]

<latexit sha1_base64="i52z1IqUGwuco3Dgv9jOX39ClOg="></latexit>

M M Mm m m
a/2a/2 a/2

m
d2ums

dt2
= CMm [uMs + uMs+1 � 2ums]

<latexit sha1_base64="Mu6FpTqPSbQi/kiC7Tb7MP9yi3s="></latexit>
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Diatomic Linear Chain
The displacements of all atoms of mass M are equivalent to each other, as are 
those for atoms m, so we can write down the solutions for unit cell s as 

We can start to solve for the frequencies, velocities, and phases by substitution 
back into the equations of motion, which give us two relations:  

An important point for a linear diatomic chain is that there is only one frequency 
for the two resulting waves. 

There is a trivial solution where the amplitudes equal zero, which corresponds to 
no wave energy, but to find non-trivial solutions we solve a quadratic using the 
determinant of a matrix.

ums(t) = Am ei(qsa+qa/2�!t)
<latexit sha1_base64="SKr8V6yjdfKDnNsni0I9+iX2LUk="></latexit>

uMs(t) = AM ei(qsa�!t)
<latexit sha1_base64="EKpJ3hyzgZQ8RfmPa2qNmD/qk8o=">AAACDXicbVDLSgNBEJz1GeMr6tHLYBQiaNjVgF6EiBcvAQWTCNm4zE46yeDsw5leISz5AS/+ihcPinj17s2/cRL34KugoajqprvLj6XQaNsf1sTk1PTMbG4uP7+wuLRcWFlt6ChRHOo8kpG69JkGKUKoo0AJl7ECFvgSmv71ychv3oLSIgovcBBDO2C9UHQFZ2gkr7CZeGlND0u4TY/osVdzd+AqFaUbzXbdKIAeo7g99ApFu2yPQf8SJyNFkuHMK7y7nYgnAYTIJdO65dgxtlOmUHAJw7ybaIgZv2Y9aBkasgB0Ox1/M6RbRunQbqRMhUjH6veJlAVaDwLfdAYM+/q3NxL/81oJdg/bqQjjBCHkX4u6iaQY0VE0tCMUcJQDQxhXwtxKeZ8pxtEEmDchOL9f/ksae2Vnv7x3XilWK1kcObJONkiJOOSAVMkpOSN1wskdeSBP5Nm6tx6tF+v1q3XCymbWyA9Yb5/wmpos</latexit>

�M!2AM = 2CMm [Am cos (qa/2)�AM ]
<latexit sha1_base64="2i9+kFzLeDlOt7S84s6DF1D6KHQ="></latexit>

�m!2Am = 2CMm [AM cos (qa/2)�Am]
<latexit sha1_base64="+HgqNH+8J9hg3c1yOh1/Cvu2Lqc="></latexit>
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Diatomic Linear Chain
There are two roots,  
where $ is the  
reduced mass of M and m together. 

As with any periodic lattice, waves with propagation constants q and q + 2"h/a 
are identical, so we only discuss waves with –"/a ≤ q ≤ "/a.  

For N total atoms, there are 2N total modes of oscillation, and there is a 
significant difference with the monatomic case: There are two possible 
frequencies for each allowed value of q (the optical branch and the acoustic). 

The upper branch of solutions and the lower branch merge for some values of q if 
the two masses are equal, but if they are not, then there will be a frequency gap. 
If a disturbance  affects the diatomic chain with a frequency between the high 
and low branches, then it will rapidly be attenuated, and won’t travel far within 
the chain.

!2 = CMm

✓
1

µ

◆
± CMm

"✓
1

µ

◆2

� 4

Mm
sin2 (qa/2)

#1/2

<latexit sha1_base64="0QlPJ4wh77CLhf0Q/M5ygR1eBHg="></latexit>
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The optical and acoustic branches of the dispersion relation for an 
idealised diatomic lattice of atoms with mass M1 and M2. 

In polyatomic 
lattices, there is a 
frequency gap 
where no waves 
can exist (unless 
M1 = M2). 

Optical phonons 
have nonzero 
frequency at the 
centre of the 
Brillouin zone (long 
wavelength limit). 

Acoustic phonons 
have a linear 
relationship 
between ! and K at 
long wavelength. 

p
µ/C !

<latexit sha1_base64="Oj87jBpkIsDdoywSsj03931Em1w="></latexit>

q

–"/a "/a0

optical phonons

acoustic phonons
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The optical and acoustic branches of the dispersion relation for an 
idealised diatomic lattice of atoms with mass M1 and M2. 

The minimum and 
maximum frequencies 
of the branches can be 
found by setting q = 0 
and q =  "/a, 
respectively. 

For optical phonons: 

For acoustic phonons: 

The frequency gap 
vanishes when m = M.

p
µ/C !

<latexit sha1_base64="Oj87jBpkIsDdoywSsj03931Em1w="></latexit>

q

–"/a "/a0

optical phonons

acoustic phonons

!op,max = [2C/µ]1/2
<latexit sha1_base64="6aNhDvF/yY9qj63qF+Rqw/YA7ZE="></latexit>

!op,min = [2C/m]1/2
<latexit sha1_base64="MLyGfeVn9cICbnSU3NOV/knGaOY="></latexit>

!op,max = [2C/M ]1/2
<latexit sha1_base64="cmjlNSF3L2fOMZry3sq0Lld55ic="></latexit>
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Acoustic & Optical Modes
The two modes are shown 
here for a diatomic basis, 
with equal mass atoms. 

The optical modes occur 
where atoms oscillate out 
of phase with each other. 
This resulting charge 
separation means that 
infrared light shining on a 
crystal can excite these 
vibrations. 

In the acoustic mode the 
different atoms oscillate 
coherently. 

If the masses differ, the atoms have different displacements. For the optical 
branch, the displacements are in the ratio u1/u2 = –M2/M1
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Quantization
The name phonon was invented by Igor Tamm in the 1920s during his 
work on the quantum mechanics of solids.  

Lattice vibrations must be quantized, like any other atomic scale oscillator. 

If the angular frequency of a particular mode is !, then the energy in the 
mode is % = (n+½)ℏ!.   

Phonons have a zeropoint energy where n = 0, and the quantum number n 
describes the amplitude of that mode of oscillation. 

We can go through the steps to quantization by considering the case of a 
standing wave,                                  . 

Because this is a harmonic oscillator, expectation value of the potential 
energy is equal to the expectation value of the kinetic energy.

u = u0 cosKx cos!t
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Quantization
For a unit volume of material with density &, the kinetic energy density is 
½&(∂u/∂t)2 .  Substitution of the standing wave expression for u and 
integrating over the unit volume gives instantaneous total kinetic energy  

and integration over time gives                               . 

This is half the total energy, so                                             

Algebra gives                                         where M is the mass of the primitive 
cell. 

KE(t) =
1

4
⇢V !2u2

0 sin
2(!t)

hKEi = 1

8
⇢V !2u2

0

1

8
⇢V !2u2

0 =
1

2

✓
n+

1

2

◆
~!

u2
0 = 4

✓
n+

1

2

◆
~/(M!)
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Phonon Momentum
A phonon of wavenumber K interacts with photons, electrons, neutrons, 
ions, etc., just as if it had momentum given by p = ℏK. 

However, the phonon does not actually carry physical momentum.  This is 
because the phonons only involve motion of the relative coordinates. 
Averaged over a full cycle, the net momentum transfer is zero.   

Put another way: phonons do not correspond to centre of mass translation 
motion of the crystal. 

Conservation of phonon momentum leads to certain selection rules that 
dictate which phonons can be emitted or absorbed under what 
circumstances. 

An example of a selection rule for photons is the Laue condition for x-ray 
elastic scattering, kʹ = k + G, where G is a vector in the reciprocal lattice. 
Momentum is always conserved.
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Phonon Momentum
Scattering can also be inelastic, resulting in the creation or destruction of a 
phonon, i.e.,  

or 

The first case shows the creation of a phonon (exciting a crystal vibration, 
increasing quantum number n), and the second case shows destruction of a 
phonon (“damping out” the vibration, decreasing quantum number n) 

In neutron scattering experiments to determine the structure of materials, 
the incident and scattered neutrons and the crystal vibrations are 
measured; further constraints are applied from conservation of energy, 
knowing that 1 phonon of frequency ! has E = ℏ!.

k0 +K = k +G

k0 = k +K +G
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Thermal Properties of Solids
The conductivity, specific heat, and other thermal properties of solids depend 
critically on the spectrum of phonons that can be supported in the material. 

Some properties, like heat capacity, can be derived from the statistics of phonon 
energy distribution; others depend on deviations from the harmonic oscillator 
potential, and interactions of the phonons with the lattice. 

The contribution of phonons to the heat capacity is known as the “lattice heat 
capacity” and over a wide range of temperatures may be the dominant 
contribution. 

The total energy of all the phonons in a solid in thermal equilibrium depends on 
the temperature. For total energy U, the specific heat is                               *. 

*CV and CP are usually nearly the same for solids. As T → 0, CV → CP 

CV ⌘ (@U/@T )V
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The horizontal 
line shows what 
is termed “the 
Law of Dulong & 
Petit”, which 
says that all 
solids have the 
same molar 
specific heat. 

This is not a 
great law, and is 
more famous for 
being first than 
for being useful 
(it was stated 
only 2 years 
after the idea of 
atomic masses 
was postulated). 

In modern units, the law of Dulong & Petit says that solids have 
molar heat capacities of approximately 3R.
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Lattice Heat Capacity
Basic kinetic theory calculations can be used to show that the specific heat 
of three dimensional solids should be approximately constant, classically.   

This applies if heat capacity is calculated per atom, or per mole of material. 
The heat capacity per unit mass is predicted to vary depending on the 
density of the material. 

Later work showed this law to arise from the equipartition theorem: each 
atom contributes an equal amount 3kT/2 of translational kinetic energy to 
the total energy of a solid, plus lattice vibration energy also equal to 3kT/2. 
The heat capacity per atom is then just cv = 3k = 4.14×10–23 J/K/atom,  
or 24.94 J/K/mol. 

In reality, this law only applies at very high temperatures, because it is 
based on Maxwell-Boltzmann statistics. Phonons obey Bose-Einstein 
statistics, and at low temperatures they are a major contributor to the 
internal energy of a solid (below what is known as the Debye temperature).
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Einstein model for D(!) 
The Law of Dulong and Petit (constant molar heat capacity for solids) was 
known to fail dramatically at low temperatures.  

Einstein (1907) tried to explain this failure by applying the new idea of 
quantization to the vibrational energy levels in solids, for energies less 
than the thermal energy kT.   N quantum oscillators with frequency ! have 
total vibrational energy U =

N~!
exp(~!/kT )� 1
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Phonon Heat Capacity
At temperature T, we have to sum over all phonon modes, described by 
wavevector K and polarization p.   

Each mode has energy ℏ! per phonon, and in equilibrium there will be an 

average number of phonons per mode given by ⟨n⟩.   

From the Planck distribution,                                         . 

 The total energy then

hni = 1

exp(~!/kT )� 1

Ulat =
X

K

X

p

hnKpi~!Kp

Ulat =
X

K

X

p

~!Kp

exp (~!Kp/kT )� 1
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Normal Mode Enumeration
In many cases there are so many discrete states that we can replace the sums 
by an integral, if we define the density of states as a function of frequency, 
Dp(!)d!. 

The lattice heat capacity is found by differentiating this with respect to 
temperature. For convenience, define x ≡ ℏ!/kT. 

The integral is doable provided we can define the density of states D(!) - the 
number of modes per unit frequency range, between ! and !+d!.

Ulat =
X

p

Z
d!Dp(!)

~!Kp

exp (~!Kp/kT )� 1

Clat = k
X

p

Z
d!Dp(!)

x2 expx

(expx� 1)2
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State Density - 1d
To illustrate the calculation of D(!), we can look at a one-dimensional system: 
an elastic line of N+1 atoms, with the ends fixed.  The atom positions are 
labelled like the crystal planes s, separated by a.  

This is a system of N harmonic oscillators, with displacements given by  
us ∝ u0 exp(–i!t) sin sKa. 

Of the N+1 atoms, only N–1 can move. Solving the problem of N–1 linked 

oscillators in classical mechanics shows there are N–1 allowed values of K: 
                                                .

s = 0 s = 1 s = 9

a

L

K =
⇡

L
,
2⇡

L
, ...,

(N � 1)⇡

L
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Allowed Phonon energies
There are N–1 allowed independent values of K, with each one associated with a 
standing wave.  In one-dimension, the density of states per unit K is L/" for 
K ≤ "/a, and 0 for K > "/a. 

In addition there are 3 polarizations for each K, two transverse and one 
longitudinal. 

For each polarization, the density of states is                               . 

This is more useful expressed in in terms of the dispersion relation,  

This way we can see that there’s a singularity in D(!) whenever the group 
velocity goes to zero. 

The above analysis uses fixed boundary conditions, but the same result can be 
obtained by using periodic boundary conditions, which are more easily extended 
to 3-dimensions.

D(!)d! =
L

⇡

dK

d!
d!

D(!)d! =
L

⇡

✓
d!

dK

◆�1

d!
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Density of states in 3-d
We can extend the analysis to three dimensions, but it will only remain this 
simple for waves along certain directions in the lattice, e.g., [100]. 

The periodic boundary condition means that the displacement of a crystal 
plane and its velocity must be continuous across the boundary between 
adjacent primitive cells, which means that: 

For N3 primitive cells within a cube of length L, there will be 3 independent  
components of K, (e.g., x, y, z), each of which can be ±m"/L, where m is an 
even integer between 0 and N. 

There are (L/2")3 allowed values of K per unit volume for each polarization 
and each branch of the dispersion relation. 

The number of modes with K < Kmax is then 

and  

exp [i(Kxx+Kyy +Kzz)] = exp [i(Kx(x+ L) +Ky(y + L) +Kz(z + L)]

N =
L3

8⇡3

✓
4⇡K3

max

3

◆

D(!) = dN/d! =

✓
V K2

max

2⇡2

◆✓
d!

dK

◆�1
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Einstein Model for Heat Capacity
The heat capacity of the quantum oscillators is found by differentiating 
with respect to temperature, and multiplying by 3 to account for the 
independent modes of a 3-d oscillator. 

This is Einstein’s result for the heat  
capacity of N identical oscillators. 

• In the high-T limit, this approaches  
the constant Dulong & Petit value. 

• In the low-T limit, this decreases  
(in agreement with experiment),  
but decreases like                       ,  
which is not observed. 

• This is a useful first approximation and is historically important as one of 
the first (partially) successful applications of quantum mech. to solids.

Cv = Nk

✓
~!
kT

◆2 exp ~!/kT
[exp(~!/kT )� 1]2

exp(�~!/kT )
molar heat capacity of diamond compared to the 
prediction of the Einstein model, for #E = 1320 K



!31Solid State Physics-6

Debye Model for Density of States
The density of states obtained by considering the volume of phonon modes in 

phase space,                                                                 , needs a dispersion 

relation to be useful in calculation. 

In the Debye approximation, the velocity of sound is taken as a constant for 
each polarization type, which is only strictly true for a classical continuum 
solid.  Under this approximation, ! = vK. 

The density of states simplifies to

D(!) = dN/d! =

✓
V K2

max

2⇡2

◆✓
d!

dK

◆�1

D(!) =
V !2

2⇡2v3
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A key aspect of the phonon mode distribution is that there is a maximum 
wavevector, dictated by the spacing between atoms. This is the fundamental 
difference between the Planck function for photon energies and the distribution 
of phonon energies.   

We can work out the maximum wavevector and the corresponding frequency in 
terms of the number density of atoms by going back to the expression for the 
maximum number of modes,                                     
                     . 

Using the sound speed v, the frequency corresponding to Kmax is 

Under this model we can calculate the total thermal energy in phonons of a 
given polarization:   

We assume the sound speed v is constant for the three polarizations and do the 
integral

N =
L3

8⇡3

✓
4⇡K3

max

3

◆
=

V

6⇡2
K3

max

!D = 6⇡2v3(N/V )

U =

Z
d!D(!)hni~! =

Z !D

0
d!

✓
V !2

2⇡2v3

◆✓ ~!
exp(~!/kT )� 1

◆
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Debye Temperature
To express the results compactly, we define x  = ℏ!/kT and xD = ℏ!D/kT = #/T 

ℏ!/k defines the Debye Temperature # in terms of the cutoff frequency for waves 

in the crystal.  Using the definition of !D,  

# can be thought of as a convenient collection of constants and factors, but there 
is a useful physical interpretation as well.  The quantity k # is approximately 
equal to the phonon energy of the minimum wavelength phonon. 

For T > #, all phonon modes are excited. 

Debye temperatures for some common elements: Li: 344 K, Be: 1440 K, Si: 645 K 

  Na: 168 K; K 91 K; Ca: 230 K; Fe: 470 K; Ne 75 K.

✓ =
~v
k

✓
6⇡2N

V

◆1/3
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Debye Specific Heat
The total phonon energy in this model is         . 

Differentiation gives   

At T >> #, the heat capacity  
asymptotically approaches the  
classical value of 3Nk. 

At low temperatures, the  
heat capacity varies like T3,  
which reproduces the observed  
behaviour of a very wide range  
of materials.

U = 9NkT

✓
T

✓

◆3 Z xD

0
dx

x3

ex � 1

CV = 9NkT

✓
T

✓

◆3 Z xD

0
dx

x4ex

(ex � 1)2
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Debye T3 Law
At very low temperatures the integral takes on the approximate value "4/15, 
independent of temperature.  Therefore the heat capacity can be written as  
CV ≈ 234Nk(T/#)3.  

The T3 approximation is quite  
good at sufficiently low temp-  
eratures, e.g., the figure shows  
the specific heat of argon  
(# = 92 K) vs. the prediction of  
the T3 law. 

For T << #, only the very long  
wavelength phonon modes are  
excited. For these, the solid can  
be treated as an elastic  
continuum. 

Good approx. for T < #/50.
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D(!), General Case
In the most general case, the challenge is to identify all possible wave 
modes within a given frequency range. Because many different waves exist 
with different dispersion relations, this can be a challenge and is better 
done experimentally as opposed to from basic theory. 

The points at which the group velocity goes to zero are interesting because 
the density of states changes quite abruptly at the corresponding 
frequencies. These are known as van Hove singularities.

Debye solid realistic crystal
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Anharmonic Vibrations
Everything so far has concerned vibrations which the energies are 
quadratic in terms of the separation between atoms. This is a reasonable 
approximation, which has the following consequences: 

 • Two waves do not interact. 

 • Single waves are transmitted without decay. 

 • There is no thermal expansion. 

 • Elastic constants are independent of P and T. 

 • Adiabatic and isothermal elastic constants are equal. 

In real solids none of these conditions are exactly true, because anharmonic 
terms in the potential energy (higher than quadratic) influence the motion. 


