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Electrons in Solids

For many properties of metals it is 
useful to treat the solid using the free 
electron model.  The ion cores are  
embedded in a sea of conduction  
electrons, which are contributed by  
the valence electrons of the free 
atoms. 

In alkali metals the ion cores may  
occupy only 10-20% of the crystal  
volume, while in noble metals the  
cores may be in “contact” with each  
other.  Common crystal structures 
are bcc or fcc.
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The Classical Free Electron Model
This model explains properties that depend primarily on kinetic properties of 
the conduction electrons, and not on interactions with the ion lattice. 

E.g., the form of Ohm’s law and some aspects of the relationship between 
thermal and electrical conductivity. 
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Electric field E
drift velocity vd

current density j = I/A
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Classical Free Electron Model
• Due to charge screening, the valence electrons have so little potential energy 

with respect to the ion cores that we can treat the electrons as free to stream 
in response to any applied electric field (but see below). 

• The electrons are classical particles (the model predates quantum). 

• The valence electrons do not interact with each other; they may be taken to act 
independently (this is the assumption that real materials most significantly 
violate, because the electron gas is actually extremely dense). 

• Defects in the crystal lattice act as perturbations to the free flow of electrons. 
They scatter off of these defects and the collisions are what limits real 
materials to finite conductivity. 

• Calculations made under these assumptions can be useful approximations, 
which are known as the relaxation time approximation.
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Ohm’s Law and Electron Drift
Write Ohm’s Law in a way that removes the impact of sample 
size/shape: 

V = IR  

V/L = IR/L 

E =   jA (𝜌L/A) / L    = j𝜌

A

L

Electric field E
current density j = I/A

j = �E
<latexit sha1_base64="VKR+0xaI2lxYUowAsImIkaN3WMU=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRbBU9mtgr0IBRE8VrAf0F1KNs22sUl2SbJCWfo3vHhQxKt/xpv/xrTdg7Y+GHi8N8PMvDDhTBvX/XYKa+sbm1vF7dLO7t7+QfnwqK3jVBHaIjGPVTfEmnImacsww2k3URSLkNNOOL6Z+Z0nqjSL5YOZJDQQeChZxAg2VvIf0TXyNRsKjG775YpbdedAq8TLSQVyNPvlL38Qk1RQaQjHWvc8NzFBhpVhhNNpyU81TTAZ4yHtWSqxoDrI5jdP0ZlVBiiKlS1p0Fz9PZFhofVEhLZTYDPSy95M/M/rpSaqBxmTSWqoJItFUcqRidEsADRgihLDJ5Zgopi9FZERVpgYG1PJhuAtv7xK2rWqd1Gt3V9WGvU8jiKcwCmcgwdX0IA7aEILCCTwDK/w5qTOi/PufCxaC04+cwx/4Hz+AH2nkKU=</latexit>

resistivity    𝜌 = RA/L 
conductivity  σ = 1/𝜌
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Electron Mobility
A similar concept to Ohm’s Law is the idea that there is an 
equilibrium average drift velocity for the electrons. The drift 
velocity is finite because of crystal defects and scattering off of 
phonons. We can then define the mobility 𝜇 and write 

Mobility is closely related to conductivity and to the concentration 

of electrons in the free electron gas:    

I ≡ dQ/dt. For a constant cross-section A, Volume = dA dx and  

j dA = –ne(dx/dt) dA, which leads to    

vd = µE
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Anisotropic Materials
The simplest form of conductivity is just a scalar, such that the 
current density and electric field are always proportional to each 
other and parallel. 

Real materials can display anisotropic behaviour: 

In this case, the flow of current may not be parallel to the electric 
field.
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Classical Theory: the Drude model
Using the classical free electron model and a kinetic theory picture of 
drift velocity/conductivity, attempt to predict the relationship between E 
and j given material properties (density, crystal structure) and chemical 
properties (concentration of free electrons).  This is the “pinball 
machine” view of conduction. 

Key assumptions: 

• Electrons accelerate due to the electric field, but are scattered by 
collisions, which occur on average every 𝜏 seconds. 

• The thermal speed of electrons is high, so the collision frequency is 
high, so that they only acquire a small amount of momentum dp 
between collisions.
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Classical Theory: the Drude model
From the definition of change in momentum and the assumption of 
isotropy, the average electron has its velocity completely randomized 
during each collision, so that the total average momentum of an 
arbitrary electron at time 𝜏 is                   . 

Because                        and                    , we can substitute to predict 

There are more sophisticated analyses, but they give the same result for 
the conductivity, σ = (nq2𝜏/m).  

This is actually a successful model, because it does not depend on 
whether the electrons follow Maxwell-Boltzmann statistics or the 
(correct) Fermi-Dirac distribution.  

hpi = qE⌧
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Frequency Response
For DC resistance of many materials, and the AC resistance of metals 
for relatively low frequencies and near room temperature, the Drude 
model proved remarkably successful. 

For magnetic effects, the model is less successful, but not totally 
inaccurate. 

However, it totally fails to reproduce the heat capacity of solids. 
According to this model, conductors and insulators should have wildly 
different heat capacities, which they do not. The model ignores the role 
of phonons. 

In the AC impedance of some metals, the relaxation time 𝜏 gives a 
characteristic frequency 𝜏–1 in the infrared range, where it coincides 
with the optical branch of the phonon dispersion relation. When the 
frequency is much lower (e.g., in semiconductors), it accurately predicts 
the frequency dependence of conductivity.
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Success & Failure
Classical free electron theory fails to explain why the electrons control the 
thermal and electrical conductivity of the metal, but do not contribute to the 
heat capacity at normal temperatures. 

It also fails to explain why the mean free path for electrons can be on the order 
of centimetres, or ~108 times the lattice spacing. 

A gas of free electrons subject to the Pauli exclusion principle is known as a free 
electron Fermi gas. 

Electrons that are separated by a few ångstroms are not sufficiently far apart 
from each other to be considered a dilute classical gas.  The failures come from 
failure to consider the quantum nature of the gas, not because the free electron 
picture is wrong.



!12Solid State Physics-8

Electron Energy Levels
Electron wave functions in atoms are not independent. The exact quantum 
description of N interacting electrons is an extremely complicated function 
that typically has to be solved numerically. 

We typically use a simplified wave function for only one electron, known as 
an orbital. The approximate quantum state of the atom is given by 
assigning N different electrons to N different orbitals, each one of which is 
a valid solution of the wave equation for one electron. 

If there are no electron interactions, the orbital model is exact. The orbital 
approximation is usually quite good for the conduction electrons. 

 ↵ =  (x1, x2, x3, ..., xN )
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 ↵ 6=  1(x1) 2(x2) 3(x3)... N (xN )
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Label the atomic energy levels by an integer n, 
which runs from 1 to N. The number of 
electrons in an orbital is dictated by the Pauli 
exclusion principle. Each additional electron 
needs to have a distinct set of quantum 
numbers (to the extent that we can identify 
individual quantum numbers with a single 
electron in a highly correlated mess). 

If we start filling the energy levels from the 
bottom (n=1), and always add electrons to the 
the orbital with the lowest energy available, we 
define the ground state of the system. 

The topmost filled energy level is called the 
Fermi level, nF.  

The energy of this level is called the Fermi 
energy, EF

cartoon potential well

EF

n=1

n=2
n=3

n=nF
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The ground state is the  
state of the system at  
absolute zero (pink line).  

As the temperature is  
increased, the kinetic  
energy of the electron  
gas increases, and some  
energy levels are  
occupied that were  
vacant at absolute zero. 

f(E) is the fraction of  
levels at energy E that  
are occupied by electrons.  
At T = 0, it is 1 for E < EF, 
and 0 for E > EF. 

The distribution is  
described by the  
Fermi-Dirac distribution:   

f(") =
1

exp[(✏� µ)/kT ] + 1
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Fermi-Dirac Distribution

μ is a function of temperature, determined so that the total number of particles 
in the system is equal to N.  

μ is the chemical potential. At absolute zero, μ =  𝜖F, the Fermi energy. At other 
temperatures, μ is the energy at which f(𝜖) = 0.5. 

If the energy of the energy level,  𝜖 ⨠ μ + kT, the distribution asymptotically 
approaches the Maxwell-Boltzmann distribution.

f(") =
1

exp[(✏� µ)/kT ] + 1
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Free Electron Gas in 3d
For a particle in three dimensions, the Schrödinger equation is  

If the particles are confined to a cube of length L, this has the solution 

As for the phonons discussed earlier, we impose periodic boundary conditions, so 
that 𝜓(x+L,y,z) = 𝜓(x,y,z). 

Solutions with this form are travelling waves, with                        ,  

and the boundary conditions that   

The energy of the orbital with wavevector k is 

� ~2
2m

✓
@2

@x2
+

@2

@y2
+

@2

@z2

◆
 k(r) = ✏k k(r)

 k(r) = A sin(⇡nxx/K) sin(⇡nyy/L) sin(⇡nzz/L)

 k(r) = eik·r

ki = 0, ±2⇡

L
, ±4⇡

L
, ...

✏k =
~2
2m

�
k2x + k2y + k2z

�
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The plane wave 𝜓k is an eigenfunction of momentum with p = ℏk and  

velocity v = ℏk/m. 

In a system of N free electrons, we can consider the occupied orbitals as points 

in k-space. In the ground state, these can be represented as points inside a 

sphere, where the energy at the surface is the Fermi energy,                       . 

Each wave vector takes up volume 8𝜋3/L,  
and the total volume is               , so the  
total number of  orbitals is 

So that 

✏F =
~2
2m

k2F

4⇡k3F /3

N = 2
4⇡k3F /3

8⇡3V
=

V

3⇡2
k3F

kF =

✓
3⇡2N

V

◆1/3
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Fermi Energy & Density of States
Once the Fermi surface is determined in k-space, 

Note that the Fermi energy only depends on the electron concentration. 

The number of electron orbitals per unit energy is known as the density of 

states                                 . 

The density of orbitals is, within a factor of order unity, the number of 
conduction electrons divided by the Fermi energy.  

The number of occupied states per unit volume at a given energy (in 
thermal equilibrium) will be equal to the product of the density of states 
times the probability distribution function (the Fermi-Dirac function, for 
electrons).

D(✏) =
dN

d✏
=

3N

2✏

✏F =
~2
2m

✓
3⇡2N

V

◆2/3
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Heat Capacity of the Electron Gas
Classical physics predicts that N free electrons should have a heat capacity 
of (3/2)Nk, just as for any other monatomic gas.  The observed heat 
capacities of metals are often ~100 times less than this. 

Why? Not every electron gains ~kT of energy as the system is heated, 
because all the orbitals up to the Fermi level are all filled. For most 
electrons, there are no empty orbitals available within kT of the ground 
state energy. 

Only the electrons near the Fermi level can be excited thermally. Very 
roughly speaking, the fraction of electron that are close enough to the 
Fermi level is T/TF.   (Defining the Fermi temperature TF = 𝜖k/T 

The total internal energy of these electrons is                               . 

Differentiating,                             - this linear component can be important 
for metals at low temperature.    
A more accurate calculation gives 

U ⇡ N(T/TF )kT

C ⇡ Nk(T/TF )

C =
⇡2

2
Nk(T/TF )
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Experimental Heat Capacity of Metals
For temperatures far below both the Debye temperature and the Fermi 
temperature, C = 𝛾T + AT3.   𝛾 and A are constants characteristic of the material.  
The linear term from the free electrons dominates at temperatures close to 
absolute zero. 

Actual values for these parameters don’t usually agree well with theoretical 
calculations, because the electrons aren’t 100% free. The electrons must be 
treated as if they were more massive than they actually are, for three reasons 
(from most to least important): 

 1. Interaction with the periodic potential of the crystal lattice. 
 2. Interaction with phonons. Electrons tend to polarise the lattice          

nearby, which changes the phonon spectrum. 
 3. Interaction of electrons with each other. 

Some materials have been discovered (e.g., CeAl3) in which the thermal effective 
mass is ~1000 me, possibly due to interactions between f-subshell electrons. 
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Conductivity & Ohm’s Law
Conductivity in a solid is related to the motion of conduction electrons through 
the lattice. The electrons have some typical speed and mean free path that 
dictate how quickly they can respond to an applied electric field. 

The electromagnetic force on an electron is                                             . 

For a free electron, p = ℏk.  

If we set B = 0 and consider the applied E field only, substitution gives  
δk = –eEt/ℏ. 

If the force is applied at time t = 0 to an electron gas that fills a sphere in k-
space up to the Fermi level, then at later time the sphere will be displaced to a 
new centre at δk. 

In the absence of lattice imperfections, phonons and electron interactions, all the 
electrons would accelerate as a whole and δk would just continuously increase.

dp

dt
= �e

✓
~E +

1

c
~v ⇥ ~B

◆
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Conductivity & Ohm’s Law
In a real crystal, δk can reach a steady state constant value even in the presence 
of an applied electric field.  

If the time taken to come into equilibrium at the steady state electron speed is 𝝉, 
then the mean change in wavevector between collisions is  
and during this time the electrons gain average velocity                           . 

The current density                                     , which we can write as j = σE. 

The conductivity σ = 1/𝜌 is related to the resistance (R = 𝜌L/A), and this is 
therefore the microscopic formulation of Ohm’s law for DC conductivity. 

The charge transported is proportional to the charge density (ne), and the 
acceleration is proportional to (e/m).  

Since we know the momentum at the Fermi level, we can also write the 
conductivity in terms of the drift speed and lattice spacing: 

h�ki = �eE⌧/~
hvi = �eE⌧/m

j = nqv = ne2⌧E/m

� = ne2d/(mvF )
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Experimental Resistivity
At room temperature the resistivity is mostly due to collisions of the electrons 
with lattice phonons. At temperatures of a few K, the resistivity is dominated by 
collisions with mechanical imperfections in the lattice or impurities. 

The net resistivity is approximately given by 𝜌 = 𝜌th + 𝜌i (Matthiessen’s rule), 
where 𝜌th is the resistivity due to thermal phonons (~independent of the number 
of lattice defects), and 𝜌i is the resistivity caused by static imperfections 
(~independent of temperature). 

𝜌th goes to zero as T → 0.  𝜌i can be determined by measuring 𝜌 as a function of 
temperature, and extrapolating down to 0 K.  It is found that 𝜌th is very similar 
for many metals. At T = 0, the extrapolated value is called the residual 
resistivity. 

An approximate indicator of crystal purity is the resistivity ratio, the ratio of the 
resistivity at room temperature to the residual resistivity. In many cases a 
residual resistivity of 1 μ𝛺-cm results per 1% impurity 
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Residual Resistivity
For example, impurities in copper in the 
range of ~20 ppm may produce a 
residual resistivity of ~2 n𝛺-cm, for a 
resistivity ratio of around 103. 

The purer the crystal, the higher the 
resistivity and the lower the residual 
resistance. Electron mean free paths as 
long as ~10 cm have been observed at 
temperatures below 4 K. 

The plot shows two different 
measurements of residual resistivity in 
potassium. Differences arise because of 
different concentrations of impurities 
and lattice imperfections.
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Ohm’s Law Example: Copper
Copper in its metallic state has 1 electron in the 4s orbital. From this we can 
calculate the electron density n: 

The Fermi energy for copper is around 7 eV, which can be translated to a 
velocity scale using                          ,  = 1.57×106 m/s. 

If the conductivity is known from experiment to be σ = 5.9×107 (𝛺m)–1, the mean 
free path of electrons in copper can be worked out from the appropriate formula,  
d = σmvF(ne2), which works out to 3.9×10–8 m = 390 Å. 

If we put a potential of 10 mV across a 1 metre length of copper wire, the current 
density j = σE = 5.9×105 A/m2.   For a wire cross-section of 10–5 m2, the current is 
5.9 A, and the drift velocity of electrons works out to 43 microns/second.

n =

✓
1 electron

atom

◆✓
1 atom

63.546u

◆✓
8.96⇥ 103 kg

m3

◆
= 8.49⇥ 1028e�/m3

vf =
p

EF /2m
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Umklapp Scattering
At low temperatures, electron-phonon scattering accounts for most of the 
resistivity of metals. Momentum must be conserved in all phonon scattering 
events, but in the “umklapp” processes, some momentum is exchanged between 
phonons and electrons, contributing to electrical resistance. 

This figure shows a “normal”, or N-  
scattering event. The grey square  
represents the first Brillouin zone of  
a crystal in k-space.  

Two waves, K1 and K2, interact and a  
new wave K3 is created, with K1 + K2 = K3. 

In “N” scattering, all the wavevectors lie  
within the first Brillouin zone.
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Umklapp Scattering
“umklapp” comes from the German word for “flipping over”, because the scattered 
wave changes direction due to momentum transfer to the lattice. The 
conservation of momentum equation is K1 + K2 = K3 + G, where G is a vector in 
the reciprocal lattice. 

This figure shows an “umklapp”, or U-  
scattering event. The grey square  
represents the first Brillouin zone of  
a crystal in k-space.  

In “U” scattering, the new wavevector may  
lie far outside the first Brillouin zone,  
which means it is not independent from an  
equivalent vector inside the zone (K3).  

In this way large amounts of momentum  
may be transferred to an electron, with the  
excess/deficit going to/from the lattice.
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Magnetic Fields
For a Fermi sphere of particles acted on by a force F and with time between 

collisions equal to 𝝉, the equation of motion is                                 . 

In the presence of a magnetic field, this becomes 

If there is a steady state in a constant field, the drift velocities now have a 
helical form instead of following the E field.  For the B field directed along the z 
axis, the drift velocities are: 

    where                       is the cyclotron frequency and cgs units are used.

~
✓

d

dt
+

1

⌧

◆
�k = F

~
✓

d

dt
+

1

⌧

◆
�k = �e

✓
~E +

1

c
~c⇥ ~B

◆

vx = �e⌧

m
Ex � !c⌧vy vy = �e⌧

m
Ey + !c⌧vx vz = �e⌧

m
Ez

!c = eB/mc
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The Hall Effect

When a current flows across a magnetic field B, an electric field develops across 
conductor with direction given by j×B. 

If current cannot flow out of the conductor in the y direction, then the drift 
velocity in y must be zero.  

This can only happen if there is an electric field Ey = �!c⌧Ex = �eB⌧

mc
Ex
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The Hall Effect

When the current is turned on at t = 0, the electrons respond to the B field by 
beginning to drift in the -y direction.

Because current cannot leave the conductor through the y direction, charge 
builds up on the opposite surfaces, establishing the Hall effect voltage.
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Hall Effect
The strength of the Hall effect in a metal is given by RH = Ey/jxB. 

From the simple equation of motion, RH = –1/ne. This is negative for electrons. 
Historically the Hall effect was taken as evidence that the charge carriers are 
negative, due to the direction of the voltage appearing.  

The size of RH can be used to infer the number of conduction electrons per atom and 
as a test of the free electron theory for solids. 

Experimental measures of RH are typically around several 10–24  in cgs units, and in 
reasonable agreement with theory for many metals. 

In some metals (e.g., aluminium, indium, arsenic) the sign of RH is positive, 
indicating that the material behaves as though the unoccupied orbitals (“holes” in 
the electron distribution) are mobile, behaving as pseudo-particle carrying the 
charge. This is a failure of the free electron model and requires (quantum) band 
theory to explain.
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The Weidemann-Franz Law
The Weidemann-Franz law is an empirical relationship stating that for metals 
at a moderate temperature, the ratio of thermal to electrical conductivity is 
directly proportional the temperature, with proportionality constant 
independent of the type of metal. 

This was interpreted as strong evidence in favour of the free electron gas model 
for metallic solids. 

The electrical conductivity is predicted to be                 . 

The thermal conductivity from basic kinetic theory is                  . 

C and v are known for a Fermi gas, with                                 and v = vF, and the 
mean free path              . 

Electron contribution to the thermal conductivity of metals is  
   

� =
ne2⌧

m

K ⇡ 1

3
Cv`

C =
1

2
⇡2Nk(T/TF )

` = vF ⌧

Kel =
⇡2nk2T ⌧

3m
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The Weidemann-Franz Law
With the two predictions based on the Fermi gas model, it is predicted that: 

This result involves neither the electron mass nor concentration. Under the 
assumption that the relaxation time 𝝉 is identical for thermal and electrical 
processes, it does not involve the collision rate between electrons. 

The Lorenz number is L ≡ K/(σT) and it is predicted to be L = 24.5 nW· 𝛺/deg2.  
For a wide range of metals at 0° and 100° C this is a reasonable approximation. 

The classical result from kinetic theory has no temperature dependence. 

At very low temperatures the value of L is observed to decrease, e.g., for copper at 
15 K the observed value is a factor of 10 less than at room temperature. This is 
because thermal and electrical relaxation times are no longer roughly equal.

K

�
=

⇡2

3

✓
k

e

◆2

T
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The Fermi Liquid
A Fermi gas is a system of noninteracting identical particles subject to the 
Pauli exclusion principle. If the same system is extended to include 
interactions between the particles, it is described as a Fermi liquid. 

Strictly speaking, the conduction electrons in a metal are a Fermi liquid. This 
causes the small deviations from the predictions of the Fermi gas model that 
become more obvious at low temperature. Non-nearest-neighbour 
interactions cannot be ignored in the liquid. 

The theory of the Fermi liquid was developed by Landau and discusses the 
system in the language of “quasiparticles”. A quasiparticle is an excitation in 
a system of interacting electrons, analogous to a photon or a phonon. A single 
quasiparticle can be thought of as an electron plus an oscillating distortion to 
the nearby electron gas.  

The main effect at reasonable temperatures is to increase the effective mass 
of the electron (e.g., by up to ~25% in alkali metals).
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Energy Bands
The free electron model did a reasonable job of calculating some properties of 
metals, but it doesn’t do a great job of explaining the differences between 
conductors and insulators, or the existence of semiconductors. 

E.g., a conductor can have resistivity as low as 10–10 𝛺· cm, but an insulator 
can be as high as 1022 𝛺· cm. This is an enormously high range that the free 
electron model doesn’t account for. 

The most general treatment uses the Schrödinger equation for electrons in 
the presence of a strictly periodic lattice of atomic potentials. 

Model the electrons as moving independently of each other in an average field 
that is determined by the symmetries of the crystal structure. 

There are a few different approximate analytical techniques, and  
computational techniques based on them that add complexity.


