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Umklapp Scattering

“Umklapp” scattering accounts for most of the electrical resistance of metals at

temperatures below the Fermi temperature.

These are generally large scattering

angle collisions, in which the direction of electron motion is changed by amounts

close to .

When the Fermi surface is smaller than
the first Brillouin zone, then there is a
minimum phonon wavevector that can
contribute to umklapp scattering.

For very low temperatures, the number

of phonon modes available falls like

e©/D) where 6 1s a parameter that depends
on the geometry of the Brillouin zone.

Real Fermi surfaces are more complicated,
but the principles are the same.
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Adjacent Brillouin zones of a bcc
crystal
with Fermi sphere of a simple metal.
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The Wiedemann-Franz Law

The Wiedemann-Franz law is an empirical relationship stating that for metals
at a moderate temperature, the ratio of thermal to electrical conductivity is
directly proportional the temperature, with proportionality constant

independent of the type of metal: K/g « T

This was interpreted as strong evidence in favour of the free electron gas model
for metallic solids.

The proportionality constant is expressed in terms of the Lorenz number.

L= K/(oT).
Experimentally, L. for many metals is found to have values in the range:

22-30 nW-C/K2 at 0° C
23-33 nW-C/K2 at 100° C
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The Wiedemann-Franz Law

7’L€27'

The electrical conductivity is predicted to be o = :
m

.. . . i 1
Thermal conductivity from basic kinetic theory is K ~ ngﬁ .

. . 1
C and v are known for a Fermi gas, with C = §7r2nk s(T/Tr) and v = vF.

. 1 2
Taking the mean free path ¢ = vp7, K ~ gﬂznkg <%)
F

. . . 1
Kinetic theory lets us substitute ep = kgTr = §mv% :

so the electron contribution to the thermal conductivity works out to be
wnk%TT

3m

K=~
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The Weidemann-Franz Law

With the two predictions based on the Fermi gas model, it is predicted that:

Ezﬁ(k_B)QT
o 3 e

This result involves neither the electron mass nor concentration. Under the
assumption that the relaxation time 7 is identical for thermal and electrical
processes, it does not involve the collision rate between electrons.

The Lorenz number is predicted to be L = 24.5 nW - Q/deg?2.
This works out to be 2.72 X10-13 (erg/esu-K)? in cgs units.

The classical result from kinetic theory has no temperature dependence.
At very low temperatures the value of L is observed to decrease, e.g., for copper at

15 K the observed value is a factor of 10 less than at room temperature. This is
because thermal and electrical relaxation times are no longer roughly equal.
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The Fermi Liquid

A Fermi gas is a system of noninteracting identical particles subject to the
Pauli exclusion principle. If the same system is extended to include
interactions between the particles, it is described as a Fermi liquid.

Strictly speaking, the conduction electrons in a metal are a Fermi liquid. This
causes the small deviations from the predictions of the Fermi gas model that
become more obvious at low temperature. Non-nearest-neighbour
Iinteractions cannot be ignored in the liquid.

The theory of the Fermi liquid was developed by Landau and discusses the
system in the language of “quasiparticles”. A quasiparticle is an excitation in
a system of interacting electrons, analogous to a photon or a phonon. A single
quasiparticle can be thought of as an electron plus an oscillating distortion to
the nearby electron gas.

The main effect at reasonable temperatures is to increase the effective mass
of the electron (e.g., by up to ~25% in alkali metals).
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Realistic
Fermi
Surfaces

The presence of zone
boundaries tends to
lower the electron
energy levels, so the
Fermi surface “necks”
out towards the centre
of Brillouin zone faces.

Figure 29 Fermi surface of copper, after Pippard. The
Brillouin zone of the fcc structure is the truncated octa-
hedron derived in Chapter 2. The Fermi surface makes
contact with the boundary at the center of the hexagonal
faces of the zone, in the [111] directions in k space. Two
“belly” extremal orbits are shown, denoted by B; the
extremal “neck” orbit is denoted by N.

Energy Bands

The free electron model did a reasonable job of calculating some properties of
metals, but it doesn’t do a great job of explaining the differences between
conductors and insulators, or the existence of semiconductors.

E.g., a conductor can have resistivity as low as 10-19 2 - cm, but an insulator
can be as high as 1022 2 - cm. This is an enormously high range that the free

electron model doesn’t account for.

The most general treatment uses the Schrodinger equation for electrons in
the presence of a strictly periodic lattice of atomic potentials.

Model the electrons as moving independently of each other in an average field
that is determined by the symmetries of the crystal structure.

There are a few different approximate analytical techniques, and
computational techniques based on them that add complexity.
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Magnetic Fields

For a Fermi sphere of particles acted on by a force F and with time between

. . . .. 1
collisions equal to 7, the equation of motion is £ (% + —) ok=F.
T
In the presence of a magnetic field, y
this becomes
d ]. — 1 — 13
h <— + —) 5k = —e (E +-Ex B) Helical
at T ¢ path

If there is a steady state in a constant
field, the drift velocities now have a
helical form instead of following the
E field.
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Magnetic Fields

For the B field directed along the z axis, the drift velocities are:
er er

et
vy = ——E; — weTv, vy = ——E, +w.Tv, v, = ——DF,
m m m

where w. = eB/mc is the cyclotron frequency and cgs units are used.

Magnetoresistance is the term for a variety of effects that are observed when
magnetic fields increase or decrease the resistance of materials to current flow.

The simplest type of magnetoresistance, geometric magnetoresistance, is
explained by the effect of a static B field on the kinetics of electron collisions
within a material. It was observed in iron and nickel by Kelvin in 1856.

Kelvin found that resistance increases by a few percent when E and B are
aligned, and decreases by a similar amount when E and B are perpendicular.
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The Hall Effect

The Hall effect was first discovered in 1879. Like magnetoresistance, there are
several different varieties of the Hall effect due to different terms in the
equations governing electron motion in combined E and B fields.

The “ordinary” Hall effect refers to the appearance of a voltage perpendicular to
the current in a conductor and to an applied B field.

The strength of the Hall effect depends on the electron density in the conductor
and the kinetics of the electron motion. In some materials it can be convenient
to describe the Hall effect in terms of the motion of holes instead of electrons.

Hall effect sensors are frequently used for sensitive position sensing, as

ferromagnets can be moved to change a voltage. The voltages are very small so
require large amplification.
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The Hall Effect

' Mfgneti|c ﬁeld[B: 1 Zx

Ey

When a current flows across a magnetic field B, an electric field develops across
conductor with direction given by jXB.

If current cannot flow out of the conductor in the y direction, then the drift
velocity in y must be zero.
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The Hall Effect

Section
perpendicular
to 2 axis;
just starting up.

When the current is turned on at ¢ = 0, the electrons respond to the B field by
beginning to drift in the —y direction.

Ex
Section + + + + + o+ + o+ y
perpendicular
toQa.xis;

drift velocity

in steady state.

Because current cannot leave the conductor through the y direction, charge
builds up on the opposite surfaces, establishing the Hall effect voltage.
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Hall Effect

The strength of the Hall effect in a metal is given by Ru = Ey/j.B.

From the simple equation of motion, Ru = —1/ne. This is negative for electrons.
Historically the Hall effect was taken as evidence that the charge carriers are
negative, due to the direction of the voltage appearing.

The size of Ru can be used to infer the number of conduction electrons per atom and
as a test of the free electron theory for solids.

Experimental measures of Ry are typically around several 10-24 in cgs units, and in
reasonable agreement with theory for many metals.

In some metals (e.g., aluminium, indium, arsenic) the sign of Ry is positive,
indicating that the material behaves as though the unoccupied orbitals (“holes” in
the electron distribution) are mobile, behaving as pseudo-particle carrying the
charge. This is a failure of the free electron model and requires (quantum) band
theory to explain.
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Magnetic Properties

Magnetism is fundamentally a quantum mechanical phenomenon, because it
relates to electron spin. In most contexts, we can ignore the magnetic properties
of the nucleus.

Magnetic moments can arise from electron orbital motion, electron spin, and
from the change in magnetic moment induced by an applied external field.

Finite magnetic moments are associated with incompletely filled electron orbital
shells.

Materials may have a permanent magnetic moment (ferromagnetic and
ferrimagnetic materials), or they may have a moment only in the presence of
an external field.

Materials in which the induced response is aligned with the external field are
called paramagnetic; if the magnetization is opposite the applied field, they
are called diamagnetic.
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Magnetization

The fundamental quantity in discussing the magnetic properties of solids is the
magnetization per unit volume, M(r). For a crystal, the magnetization is the
total dipole moment of a primitive unit cell divided by the cell volume.

In paramagnets and diamagnets, the magnetic susceptibility is defined in
terms of the magnetic field by y = M/H. This relation is normally linear. In
ferromagnets, there is no one to one relation because of hysteresis.

B
To express the susceptibility in terms of the induction field, M = _ X2
pro(1+ x)

A paramagnetic material has y > 0.

Susceptibilities are typically << 1.
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Diamagnetism

Alkali metals tend to be weakly paramagnetic: individual atoms do not have
permanent dipole moments, but they tend to align with an applied field.

Noble metals and most nonmetals are diamagnetic.

Diamagnetism can be partially explained by a classical calculation: the
response of electrons to an applied field is to partially shield the region
interior to the electron orbits from field changes.

Application of an external field will cause the electron motion to precess at
the Larmor frequency. The application of the field causes a circular current
around the nucleus, which induces a magnetic field that tends to oppose the
original field.

When the applied field is weak, the Larmor frequency is small compared to
the frequency of the original motion.
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Langevin Diamagnetism Equation

Classically, the current arising from the Larmor precession of Z electrons is

I=(-Ze) (% - %)

which produces a magnetic moment u = [ A for a loop of area A.

If (p?) = (z*) + (y*) is the mean square value of the orbital radius in a plane,
Ze?B,
)

the resulting moment is ¢t = —

For a spherically symmetric distribution, (r?) = 3(p?)/2

uolN Ze?
6m

(r®)

When conduction electrons are negligible, this formula gives roughly correct

results if <?“2> is calculated quantum mechanically, but it fails for metals.
47

and for NV atoms for unit volume, the susceptibility is then x = —




Paramagnetism

Paramagnetism is found anywhere the total spin or orbital angular momentum
of electrons is nonzero, and in metals. In metals, the conduction electrons are
free to align their dipole moments with any external field.

+ Any substance with an odd number of electrons, e.g., sodium atoms, gaseous
nitric oxide.

* Free atoms and ions with partly filled electron subshells. Paramagnetism is
often weaker in the solid state than in gaseous states because the solid has
more limited ability to respond to applied fields.

* A few compounds with an even number of electrons, notably molecular oxygen.

Paramagnetism is inherently quantum mechanical.
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Quantum Theory of Paramagnetism

For an atom or ion in free space with total angular momentum J, the
magnetic moment is a multiple of the Bohr magneton

p=grLpsJ

where the Landé g-factor accounts for the varying strength of the spin
and orbital contributions to the magnetic moment:

JG+1) +s(s+1)—1(1+1)

=1+ -
2j(j +1)

The quantum numbers for the ground state of a multi-electron atom or
1on are determined by the solution of the Schrodinger equation, and are
summarized in Hund’s rules for assigning quantum numbers to
electrons in the way that minimizes the total energy.
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Quantum Theory of Paramagnetism

In a magnetic field, the energy levels are split by an amount
proportional to the projection of the dipole moment in the field direction,

U=—p-B =mjgrupB

3

s Mo
1
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—< 2uB

~ \ 4
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Figure shows the energy levels of a system with /=0 and s=1/21in a
magnetic field along the z-axis.

For electrons, the magnetic moment is opposite to the spin, so the low-
energy state has u aligned with B, and the high-energy state anti-
aligned with B. 50

Quantum Theory of Paramagnetism

If atoms are oriented randomly with respect to the field, then there are
just as many positive as negative dipole moments, and the
magnetization will be zero.

If an external induction field 1s applied, atoms will tend to align with B
in order to lower their energy. A net magnetization in the same
direction as B will result.

At absolute zero, all the atoms/ions should be in the lowest-energy state,
but for non-vanishing temperature there is a finite probability that a
given atom/ion will be found in the higher energy state.

A basic prediction of quantum mechanics is that the paramagnetic

response of a collection of electrons will be a function of temperature.
The specific details can be calculated from Fermi-Dirac statistics.
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Quantum Theory of Paramagnetism

The probability for a system to

-y
<
S

be in a state with J, = m;h
Lower state

=
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is given by the distribution

e—mnguBB/k?BT

o
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Figure 3 Fractional populations of a two-level
divol < found b system in thermal equilibrium at temperature T
ipole moment 1s found by in a magnetic field B. The magnetic moment is

sum@mg over the range (?f proportional to the difference between the two
possible m; values from —j to curves.
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More atoms are in the lowest
energy state than any other.
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o
o
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The expectation value of the
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Brillouin Functions

The summation can be expressed in closed form using the Brillouin functions,
By(x), as (u-) = grusj Bi()

where © = grupj B/kgT and j has its usual meaning as the total angular
momentum quantum number. The Brillouin function is

2+1 [(23’ + 1)1} 1 [ﬁ}

. : — — coth | —
2 27 29 2

By(z) =
If the concentration of magnetic ions is n, then M =n g usj BJ(x).

When gugjB >> kgT, this corresponds to x >> 1, and the level splittings are much
larger than the mean thermal energy. Nearly all ions are then in their lowest
energy state and the dipoles are nearly all aligned with the B field.

In that case, the magnetization is saturated. By —> 1 and M —> ngugB
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The Curie Law

In the limit of small x, the Brillouin function tends to become linear in x,

By(z) = (5 +1)z/(3))

(J+1
In this limit, the magnetization is M = ng% ,u2B % B
B

this represents linear paramagnetism. The total magnetization must account for
any diamagnetic contributions, but these are frequently quite small.

This limit is approximately valid for many ionic solids (known as “paramagnetic
salts”) at room temperature. In the limit of small x, we can express this as the
Curie Law for magnetic susceptibility: muoM C

B T

using the Curie constant, C' = pongs % j(j +1) /3kp
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The Curie Law

The Curie Law is often encountered with the substitution p2 — g% (7+1)7,
where p is the “effective Bohr magnetons per ion”.

When the magnetization is measured, the result can be compared to the
predicted value of p as a test of the theory. Values typically range from around
1.5-10.

For rare earth ions, the data agrees with the Curie law in the weak field limit.
These ions have their valence electrons in the f-subshell.

For the transition metals, the agreement is not as good. This is because the d-
subshell wavefunctions are not well approximated by the equivalent single
electron orbitals. The total electron probability distribution in these cases is
represented by linear combinations of orbitals in which the contribution of L to
the dipole moment is said to be quenched. (i.e., J = S and g1 = 2).
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Spontaneous Magnetization

In some atoms with unfilled electronic subshells, long-range order is
exhibited in the arrangement of dipole moments.

Long range magnetic order is interpreted in terms of local induction
fields produced at the site of each dipole - every point in the crystal
lattice has an associated dipole moment, and their orientations are
correlated. This local field is called the “Weiss effective field”.

In ferromagnetism, the moments are aligned, resulting in
spontaneous magnetization.

In antiferromagnetism, moments are anti-correlated, causing the net
magnetization to vanish.

In ferrimagnetism, moments are anti-correlated, but have unequal

magnitudes, so they do not completely vanish.
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Magnetic Materials

Iron, nickel, and cobalt are ferromagnetic at room temperature.

Gadolinium and terbium at low temperatures. Other rare earths become
ferromagnetic only at temperatures approaching absolute zero. At
intermediate temperatures, these rare earths are antiferromagnetic.

At high temperatures, these materials become paramagnetic, as the
high thermal energies randomize correlations between nearby dipoles.

The changes with temperature can be described as a phase change that
occurs a the Curie Temperature, Tc.

Above the Curie temperature, all spontaneously magnetized materials

become paramagnetic (no magnetization except in response to an

appleid field).
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Curie Temperature

Suppose the local field at any point in a solid can be written as the sum
of an applied field and a field proportional to the local magnetization:

B = Ba + /vLOfyM
If we have n identical atoms per unit volume, with total angular

momentum given by the quantum number j. The magnetization is
M =ngrpupj By(z'), where we define 2’ = [gr.1u5j(Ba + poyM)] /kpT.

To find the spontaneous magnetization, set B, = 0 and solve for M. This
is easiest to do graphically. Graph By(x) vs. M /ngripj, and where these
points intersect we have a solution for spontaneous magnetization.
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Curie Temperature

Line (a) shows the b2
Brillouin function. 1.0
Line (b) shows a low

temperature solution. 0.8
The curves intersect at _

A, showing that f 0.6
spontaneous )
magnetization can 0.4
occur. At high

temperature, the 0.2

appropriate line 1s
given by (c), which only
intersects at M = 0.
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Curie Temperature

The Curie temperature can be found by equating the limiting slope of
the Brillouin function to the slope of the linear curves in the graphic
solution for M, and solving for T. The result is

ng? u2~y
Tczwj(]+l)
3kp

and we can also find the parameter y = T¢/ C.

If an external field is applied, the Brillouin function shifts to the left
and intersects the linear curves for any value of T. For small fields
typical in lab circumstances, this intersection typically happens where
the Brillouin function is linear.

For small fields and high temperatures, the resulting magnetization is

C : . : :
M = B,, which gives the Curie-Weiss law for ferromagnets

po(T —1T¢)

above the Curie temperature: x = C/(T' —T¢) .,




Experimental Data
J 'ADLE 11-3 >aturation mMagnetization M,, Curie Temperature I, and Effective

Number of Bohr Magnetons p for Ferromagnetic Elements

M, T.
Material (106 A/m) (K) p
Iron 1.75 1043 2.219
Cobalt 1.45 1404 1.715
Nickel 0.512 631 0.604
Gadolinium 2.00 289 7.12
Terbium 1.44 230 4.95
Dysprosium 2.01 85 6.84
Holmium 2.55 20 8.54

Sources: American Institute of Physics Handbook (D. W. Gray, Ed.) (New York: McGraw-Hill,

Because the ferromagnetic behaviour is such a complicated function of electron
angular momentum and energy, these values vary significantly between
different ions and compounds of the same elements.

The saturation magnetization is the asymptotic value of M as T —> 0.
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Origin of the Weiss Field

Atomic dipoles cannot account for the Weiss local field of a ferromagnet.

The Weiss field does not arise from Maxwell’s equations. It arises due to
Pauli exclusion principle interactions between charged particles, and
can be expressed as a potential energy term involving spin-spin
interactions between pairs of atoms.

The exclusion principle requires the total wave function for a collection
of electrons to be antisymmetric under the exchange of particle
coordinates and spins.

This produces the well-known triplet and singlet states in multi-electron
atoms. In the triplet state the spins are aligned, and the potential
energy 1s lower, but the mean separation is wider.

The exchange energy term can either be positive or negative.
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Heisenberg Exchange Coefficient

Je

Co
Ni

rirg

Mn

Exchange energy can be writtenas £ = —J. S; - S j / h . The sign change
indicates the difference between ferromagnetic and antiferromagnetic materials.
The elements are plotted according to their interatomic distance, scaled to the

average distance of 4d electrons from a nucleus. 64




